

Daily Tutorial	Sheet-10
-----------------------	----------

Level-2

116.(A)
$$N_2O \Rightarrow N = N = O$$

$$N_2 + \frac{1}{2}O_2 \longrightarrow N_2O$$

$$\Rightarrow \quad (N \equiv N) + \frac{1}{2}(O = O) - \left[(N = N) + (O = N) \right] \quad \Rightarrow \quad 946 + \frac{1}{2}(498) - 418 - 607 = 170 \, \text{kJ/mol}$$

 \Rightarrow Resonance Energy = 82 - 170 = -88 kJ/mol.

117.(B)
$$CH_2 = CH_2 + 3O_2 \longrightarrow 2CO_2 + 2H_2O_2$$

1411 kJ Heat is released with = 3 mole of O_2

6226 kJ Heat released with = $\frac{3}{1411}$ × 6226 = 13.23 mole of O₂

$$PV = nRT$$

$$V = 13.23 \times 0.0821 \times 273$$

$$V = 296.5 lt.$$

118.(ABC) By definition

119.(A)
$$C_5H_{10} + H_2 \rightarrow C_5H_{12}$$
 $\Delta H = +126 \text{ kJ/mole}$

$$C_5H_8 + 2H_2 \rightarrow C_5H_{12}$$
 $\Delta H_{actual} = +230$ kJ / mole

$$\Delta H_{th} = 2 \times 126 \text{ kJ} / \text{mole} = 252 \text{ kJ} / \text{mole}$$

$$R.E = 230 - 252 = -22kJ / mole$$

120.(B) Applying PV = nRT for gaseous mixture

$$\left(\frac{740}{760}\right) \times 1 = n \times 0.082 \times 298 \quad \Rightarrow \quad n = 0.0398$$

Heat generated = Heat capacity \times Temperature rise = $1260 \times 0.667 = 840$ cal

Mole of CH₄ in the mixture =
$$\frac{840}{210.8 \times 10^3}$$
 = 3.98×10^{-3}

Mole per cent of $CH_4 = \frac{3.98 \times 10^{-3}}{0.398} \times 100 = 10$

121.(C)
$$C + H_2O(g) \longrightarrow H_2(g) + CO(g)$$

$$\Delta H_f^o = ?$$

$$\therefore \quad \Delta H^{o} = \Delta_{f} H^{o}_{CO} - \Delta_{f} H^{o}_{H_{2}O} = -110.53 - (-241.81) = 131.28 \text{ kJ/mol (} \because \Delta_{f} H^{o} \text{ for C and } H_{2} \text{ are zero)}$$

Thus,
$$\Delta H^{\circ}$$
 needed for 100 g carbon = $\frac{131.28 \times 100}{12}$ kJ

Now, 393.51 kJ energy is provided by 12 g C

$$\frac{131.28 \times 100}{12}$$
 kJ energy is provided by = $\frac{12 \times 131.28 \times 100}{12 \times 393.51}$ = 33.36 g

122.(A) Meq. of acid and base = 200

i.e. 200 Meq. of HCl react with 200 Meq. of NaOH to produce heat = ΔH

:. 1000 Meq. of HCl when react with 1000 Meq. of NaOH will give heat

=
$$5 \times \Delta H$$
 = Heat of neutralization

Now, heat produced during neutralisation of 200 Meq. of acid and base

= heat taken up by calorimeter + solution =
$$M_1 \times S_1 \Delta T + M_2 \times S_2 \Delta T$$

$$= 12 \times 1 \times 4.4 + 600 \times 1 \times 4.4 = 2692.8$$
 cal

 \therefore Heat of neutralization = 5×2692.8 cal = -13.464 kcals

123.(A)
$$C_4H_{10}(g) + \frac{13}{2}O_2(g) \longrightarrow 4CO_2(g) + 5H_2O(g)$$
 $\Delta H = -2658 \text{ kJ}$

Molecular weight of $C_4H_{10} = 58$ g/mole

58 g of butane on combustion produces 2658 kJ heat

$$\therefore 11.2 \text{ kg of butane on combustion produces} \frac{2658 \times 10^3 \times 11.2}{58} \text{ J}$$

Family needs 20,000 kJ of energy per day

.. Number of days =
$$\frac{2658 \times 10^3 \times 11.2}{58 \times 20,000}$$
 = 25.66 days

124.(B) Total energy required in the day =
$$\frac{150 \times 24 \times 60 \times 60}{1000}$$
 kJ =12960 kJ [:: Watt = Jsec⁻¹] Units of glycogen required = $=\frac{12960}{476}$ = 27.22 units

- **125.(A)** \rightarrow In, endothermic reaction, on increasing T, reaction moves in forward direction.
 - → There is no effect of addition of solid component on equilibrium.
 - $\rightarrow~$ On adding NH $_4$ OH, NH $_4^+$ concentration increases, due to which reaction moves to left side.

VMC | Chemistry 26 Thermochemistry